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MANTMUM ENTROPY CALCULATIONS 0O A DISCRETE PROBABILITY SPACE

P. F. Fougere
AFGL/LIS
Hanscom AFB, Bedford, MA

To Ed Jaynes, who started it 30 years ago and whose
clarity of exposition is an inspiration to us all.

I. The Maximum Entropy Princijle

In a remarkable series of papers beginning in 1957, E. T.
Jaynes (1957) began a revolution in inductive thinking with his
principle of ma<imum entropy. He defined probability as a degree of
plausibility, a much more general and useful definition than the
frequentist definition as the limit of the ratio of two frequencies in
some imaginary e:periment. He then used Shannon's definition of
entropy and stated that in any situation in which we have incomplete
information, the probability assignment which expresses all known
information and is maximally non-committal with respect to all unknown
information is that unique probatility distribution with maximum
entropy (ME). It is also a combinatorial theorem that the unique ME
probability distribution is the one which can be realized in the
greatest number of ways. The ME principle also provides the fairest
description of our state of knowledge. When further information is
obtained, if that information is pertinent then a new ME calculation
can be performed with a consequent reduction in entropy and an
increase in our total information. It must be emphasized that the ME
solution is not necessarily the "correct" solution; it is simply the
best that can be done with whatever data are available. There is no
one "correct solution", but an infinity of possible solutions. These
ideas will now be made quite concrete and expressed mathematically.

(a) Discrete Probability Space.

We have n propositions or statements, S., S, . . .S , each
of which can be assigned a probability p., i = 1,n.” Thé numbernp.
runs from zero when our information telld us that S. is not true to
one when we assume that S. is true. In the case of'a die, S, might be
the proposition that on the next throw of the die face i will be up.
If the die has not yet been cast then our belief that face i will come
up next is described by assigning a number to p.. Tf the die were
perfectly symmetric and thrown in a fair way, making no attempt to
favor any face, then every face would be equally likely to occur and
then since one of them must occur, the probability of the statement
"some i will occur" is 1. Thus the probabilities would each be set
Lo 1/n; in the case of a dic (pi = 1/6, i=1,6). This is a simple
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expression of lLaplace's "principle of insufficient reason " which has
been attacked by many but has never been replaced. [t is essentially
a symmetry principle. TIf the mechanism of selecting a number at
random from the possible set of n is symmetric with respect to all
members of the set then the probability of each is 1/n. There are
many practical realizations of this mechaaism of selection. All of
the resulting problems are isomorphic and all can be solved in
precisely the same way.

1. There are n distingwichahl~ bhar Gllieiwise identical objects
numbered 1, 2, ....n in an opaque container. An experiment consists
of selecting an object, noting its number and replacing the object in
the container.

2. A roulette wheel containing 36 numbered slots is spun and a small
ball is set in motion in the opposite direction. When both wheel and
ball slow down sufficiently the ball drops into one of the slots., The
number is recorded.

3. An ordinary 6 sided die is thrown. The number of spots facing up
is recorded.

4. A deck of 52 playing cards is shuffled face down. A card is
selected and its value noted.

Note that there may be bias introduced either accidently or
deliberately (to cheat) in any of these games. But also note that if
the bias (a favoring of any outcome over the others) becomes large
enough, the players of the game will almost certainly notice, with
retribution to the perpetrator soon to follow. Cheats at poker, craps
(dice) and roulette have often met an untimely end!

We will soon see that the ME method is admirably suited to detecting
such biases, even very tiny ones. Every time a correctly calculated
ME probability distribution fails to reproduce an observed frequency
distribution accurately enough, the conclusion can he drawn that a
bias which has not yet been taken into account is operating. In just
this way was quantum mechanics discovered!

The principle of insufficient reason will be derived as the maximum
entropy assignment: given only an enumeration of the possibilitics
and normalization:

Lp =1, (1)

and nothing else.

Throughout this article, sums on i will always run from 1 to n, and
for simplicity of notation the limits will not be typed. The ME
probability distribution given only the above information is (p, =
1/n, i=1, 2 ...n). This statement will bhe proved in Section b.! This
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expresses exactly the known information and nothing more. Any
subsequent information which is provided, for example: "the die is
not symmetric", will lower the entropy and change the probabilities
accordingly.

(b) Entropy.

Tn his wonderful little book on information theory Shannon
(1948) first set forth the axioms or eiementary desiderata of
consistency as follows: if S is the measure of information or
uncertainty and Py = probability of the i'th outcome:

1. S= S(pl’pz, ...pn)

The information depends upon the entire set of probabilities.

2, Tf all p; are equal then S is a monotone increasing function of n.
With more possibilities to checese from the informaticn in a choice is
greater,

3. S is additive for compound independent events. [f events A and B
are independent, S (AB) = S(A) + S(B). The information contained in
ihe statement "it is raining and today is Tuesday" is exactly equal
to the information contained in the statement "it is raining" plus the
information contained in the statment "today is Tuesday".

4. S does not depend upon how the problem is setup. See Figure 1,

Figure 1. Two sets of probability assignments. In la there are three
events A, B, C with probabilities 1/2, 1/6, 1/3 respectively. 1In 1b
the final state A, B, C is reached via an intermediate state D with
probability 1/2. The information in both diagrams at stage A, B, C
must he the same.

The information in the probability assignment A = 1/2, B = 1/6, C =
1/3 in Figure la must be the same as that in Figure 1b where we have
used the intermediate point D.

207
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Shannon then proved [see also Tribus (1961, 1968)] that this measure
of information has the form:

H= - KZX plog p ()

and furthermore that this functional form is unique: it is the only
form capable of satisfying the four axioms. The constant K is merely
a scale factor and the base of the logarithm is arbitrary; for
convenience the constant K is set to 1l an! the base of ihe logarithm
is taken to be natural. Thus we have:

H= -Xplnp, (3)

Since the p, are all in [0,1], H > 0, if we agree that 0In0 = 0, (a
propositionlwhich has zero probability convevs no information). A5 an
elementary exercise let us prove that the probability assignment with
maximum entropy is one with Py = 1/n.

WehaveEpi=1, H= ‘-Epllnp| (4)

F the e i - = . -
orm the expression ( = y p' In pl + A (E pl 1)
Where A is a Lagrange multiplier used to enfurce nurmalization,

Now ditferentiate with respect to Pyt

00
api
thus  |n P = A -1
then Py = exp (A-1) (5)

But this is independent of j. Thus all p. are equal and by
normalization they sum to 1; therefore p.J= 1/n, j=1,n. Thus with
only an enumeration of the possibilitiesthich are exhaustive (one
must occur) and exclusive (only one can occur) and normalization, the
probability assignment which maximizes the entropy brings us back to
Laplace's principle of insufficient reason. Any further information
would change the probabilities and lower the entropy. We do not need
Laplace's principle of insufficient reason; entropy maximization
subject only to normalization produces Laplace's principle as a
theorem or result.

=—(Inpi+1)+)\=0
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(c¢c) Maximum Entropy Formalism.
Since we will be maximizing entropy uader a variety of
constraints, it is helpful to have "cookbook .ecipe" or a "crank to
turn".

In addition to normalization (Eq. 1) we may have M constraints in the
form of expectation values or averages in the form:

) p; fm (Xi) = <fm>= Fm, m=12.. M (6)

We use the calculus of variations now and take variations of our
important equations 4 and 6 to get:

SH=-X(d+Inp)ép =0
Ng-NXép=0
|2]31>\m>“i,tm(xi)5pi =0 (7

Ans Ay «.. A, are, of course, Lagrange multipliers. Now add the
three‘equatiohs and factor Spi:

Cltampeng-1+Z Nt 00lop=0 8

i

For any arbitrary variation, api, the expression in brackets must
vanish for every value of i. Solving for 1n p, we get

|np| = - )\O—Z‘: '\mfm(xi)

Thus
P = exp [- N - § Am Tm (xi)] (9)

Now for normalization we have that

Lp=1=Xep [~ N - Dhplni)] ()

Solving for exp ( AO), which we call the partition ftunction 7:

Z=exp(g) =Zexp [ - fn0)] (1)

Taking logs of both sides

No=ImIexp [ - Zng it ()] (12)




210 PoF FOUGERE

Thus A _is the log of the partition function 7; for reasons which
will becCome ciear immediately we calil A the potential function.

Now differentiate Ao with respect to r

22 = Th o) exn [ = By T )]

- (13)
oM Eexp[ mem(x”]

Multiply numerator and denominator by exp (- A )
ply y ex| o

Then

0 )\U - ZI: 'r (xi) exp [— }\0 —§ >‘m 'm (xi)] (18)
oM L exp [~ Ng = & A fy (6]

Now notice from Eq. 9 that the exponential of the bracketed term in
numerator and denominator is just the probability P Thus

¢ N - Lt o) p

— — = = -<f > (15)
c A Y
r =~ P
i
We now see that Ajs called the potential funcrion because the
constraints are glve1 as derivatives of A with respect to all the
other A's

For convenience we now summarize the important formulas:

Lexp|- L Ay i (%) 1

i
din

= - <f (16)
¢ A\ m”

p; = exp[ L\ m(x)]
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We have exactly one Lagrange Multiplier Ai for each constraint and we
determine the set of A's by solving the MXM set of equations

d - 17
W InZ(>\1, )\2’ ...... cany )\M) = - Fm ( )

Finally the probabilities are given by:
b= UZexp [~ N fylx) = N fp () o= Ay By (x)] (18)

We can seee immediately that ip; = Z/7=1 and thus the formalism
automatically produces a normalized set nf Py

[I. Wolf's Dice Data
To make the foregoing ideas as concrete as possible we

will now examine in detail a remarkable series of experiments
performed about 100 years ago by the Swiee scientist Rudof Wolf who
is known well fer his work on sunspots. One of the experiments,
reported by Czuber(1908), consisted of throwing a pair of dice, one
red, the "ROTER WURFEL" ard the other white, the "WEISSER WURFEL", a
total of 20,000 times. The dice were thrown carefully in such a way
as to avoid as much as possible introducing any bias, any artificial
favoring of any of the 6 sides. FEvidently (as we shall see) the dice
were made using ordinary care but not extraordinary care - they were in
fact quite noticeably biased.

e sl - Ce ~oncenl -

Cd ,3, w3 il oL itten oxten n.vCl, oo T L SCntral and on Wolf's
dice data in particular in no less than four publications (1963a,
1978, 1979, 1982). 1 would urge the reader to look up and read this
exciting scientific saga. 1 freely acknowledge my deep indebtedness
to Ed Jaynes for my inspiration in writing this paper but of course
any mistakes which I may have made in interpretation, emphasis,
algebra or arithumeiic are mine alone.

Table [ lists the totals obtained by Wolf for the 36 distinct
possibilities - that is: white 1 red l; white 1 red 2; . . . up to
white 6 red 6.
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Table 1 Wolf's Dice Data:

Weisser Wurfel RM RE
NR. ] 2 3 4 5 6
1 547 587 500 462 621 600 3407 0L 17075
v o2 609 655 497 535 651 R4 3631 0.13133
-~ 3 514 540) 468 438 387 629 3176 . 15880
24 462 507 414 413 509 411 2916 0.14380
5 551 562 499 506 658 (72 3448 1, 17240
-6 563 598 319 487 609 646 LD 0, 1710
I 3246 3449 2897 2841 3635 3932 20,000
WF = 16230 17245 14485 .14205 18175 .19660 1.0

RM and WM are the red and white marginals, respectively.
RF and WF are the red and white relative frequencies, respectively.

Since there is no evidence for and no reason to expect that the two
dice were correlated, the results for the white die are independent ¢
those for the red die, and Table T also lists the white marginals, the
total number of times that the white die came up a given number of
spots indenendent of which red spot was showing. Similary the red
marginals are listed. Tt can be seen at once that the dice were
indeed biased; for example W6 appeared 3932 times, almost 600 times
more than expected if the die were fair; W4 appears only 2841 times,
492 times less than expected. The relative frequencies give=n {n Table
L are just the marginals divided by 20,000,

a. The White Die
Let ue now, following Ed Jaynes, try to account for come

of the discrepancies or biases using ME. At this point, it is
important to know what a conventional plaving "die" is. 1t is a solid
cubical object, made of a machineable substance such as ivory.
Hemispherical depressions or excavations (spors, are maie
symmetrically in each face, with the number of spots on opposite faces=
totaling 7. The spots are painted in a contrasting color. Thus 1 is
opposite 6, 2 opposite 5 and 3 opposite 4. If face 6 is "up" and face
2 is visible, then face 4 is to the right of face 2. The reader's
intuition will be aided by actnally examining a real die.

1. One constraint. The most obvious physical asymmetry is now
apparent. Whereas six spots are removed from face 6 only one is
removed from face 1 and thus the center of gravity of the die is
shifted very slightlv toward the 1 face. Similarly the 2 and 3 faces
are slightly heavier than their opposites 5 and 4 respectively,
Quantitatively, the center of gravity will be shifted toward the "3"
face by small distance € corresponding tc a one-spot discrepancy.
Similarly the center of gravity will be shifted toward the "2" face by
3 € and towards the "1" face by 5 €, Thus the spot frequencies should
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he shifted proportionalty (frequency shift = @ times center of aravity
<hift =€), Then the spot frequencies should vary linearlv with i:

g, = 116 + ac iy () (19)

Where fl (i) = i-3.5.

Thus the expected number of spots would be shifted to (all of the <suns
on i will now run from | to 6.)

<i>=Lig = 35 + 115 a (20)

or the function f‘(i) has a4 non—-zero expectation:

<ty >= 1715 we (21)

we note by calculating from Table | that the average nimbher of spots
showing on the white die was 3.5983. This was larger than 3.5 as
expected on the physical grounds just discussed and not equal 3.5 as
would have been expected from a fair die. TLet us use this one plece
of information as a constraint and find the six p.'s which vield
maximum entropv. The complete statement of the problem =t this stage
is: we are piven l: an enumeration of the possibilities, namely { =
1,2,3,4,5,6 and 2 ¢ <i> = A and nothing else. It is thus simpler to
use h (x.) = i as constraint function, rather than f (x.) =1 =3.5,
because we are given the average value of h - A, The MF equatinns

et 2 = ¥ exp Ahix). hx) =i,
Zp hx)=Xip =A (22)
lLet vy = exp (A)
Z=X@Exp(r))
=Ty =y + 2+ P ey P (23)
onZ
oA\

Expanding and simplifying we get:
(1 -A) +@2-Ay + 3 - Ay + (4-A)
+G-Ayt+6-Ay =0 (25)

=yz[1+2y + 32 + a8 + 52 + 6y°] = A
(24)

This 5'th degree equation has one real root; Table I1 gives the value
of the real root y versus the average A. Here we have used the TMSL

subroutine "ZPOLY".
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[able TH. Root of Hg. 20 (y) versus average value (A),

A v A v A v A v A v
1.0 000000 2.0 532820 3.0 (839709 4.0 1.190804 5.0 1,576807
1.1 090912 201 505943 3.1 .870434 401 1235307 5.1 2.006740
.2 L1o6750 0 2.2 0597991 3.2 901644 4,2 1.282300 5.2 2,1641%5
1.3 02303150 2.3 .6209215 3.3 )3334( 4.3 1.333821 5.3 2.360807
1.4 287438 2.4 659827 3.4 .906271 404 1.389030 0 5.4 2, 6160490
1.5 0337239 2,5 ,690010 3.5 1.000000 4.5 1,449254 5.5 2.965257
Loh L332249 0 2.6 .719927 3.6 1.034906 4.6 1.5155%49 5.6 3.47901°
1.7 .423534 0 2.7 7497260 3,7 1.071191 4.7 1.589282 5.7 4.323151
oS L46206% 0 2.8 J779545 3,8 1.109085 4.8 1.672267 5.9 5,996777
1.0 L49%320 2.9 .309516 3,0 1,.148853 4.9 1.706H0964 5.9 10,495601

For wolf's white die, we had A = 3.59873 .
Z=0.70292,  The MU probabilities are pi
It

ivi ng vo= 1.0734302,
v V17 and are given 1a Table

1] jJ

fable 1L, Wolf's dice data with one constraint (white die)d

1 o = - C
! el by A TR Yy
! 0.16230  D.,15294 1.0094 11.46
2 0.17245  0.15813 0.0143 25,75
3 0.144385  0,16361 - 0.0188 43,02
4 0.14205 0.16922 - 0.0272 R7.25
5 0.13175  0.17502 10.0067 5.1%
f 0.19660  0,18103 C.0156 26,78
199.43
2, oare the relative frequencies (WF) tfrom Table T.
D are the ME probabilities based on the constraint: A = 71> =
Lo,
3059573,
2
Ci = 000, (s, —P \ /p = Partial contribution to Chi™, lthe critical
vdlun' uhl ot 5) = 19,49 on 4 degrees of freedom. The concept o
decrees of freedom will he d15Lus%ed later,
Exanining Table 171 carefuliy we see that the deviations, \. REEEP
between observed relative frequencies, ¢., and ME prolahLl1t1nx

Al
are negative for faces 3 and 4 and pOnLt%\e tor faces 1, 2, 5, b afd
the C. tell us that these deviations are highly significant. This
does 1ot mean that MF has failed but that there is a further phvsical
constraint. At this point in Jaynes' paper he again demonstrates his
aenius as a practical working physicist, who as Enrico Fermi Jdid, now
delights in going into the machine shop to make things work. Javnes
explains to us just how to turn a lump of ivory into as perfect a cube
as possible. A milling machine used by an expert would have no
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trouble in cutting 5 sides of the die all accurately plane with all
ples accurately 9G” and the top face accurately square, But then
the die would have to be removed from the machine and turned upside
down to tinish to final face. Tt would be extremely difficult to
ajust the work table height so that the final dimension is exactly
equal to the other two: The result of the difficulty would be a die
which is either: (i) slightly "oblate" with onc dimension shorter
than the other two or (ii) slightly prolate with one dimension
«iightly greater than the other two. Of course either type of
imperfection would constitute a "constraint' and would change the
relative frequencies.

2. Two Constraints, We can now see, quite clearly, that the white
die must have heen prolate with the 3 - 4 dimension being slightly
uredater than the 1 - 6 and 2 - 5 dimensions! See Figure 2 for an
exaggerated sketch of a prolate die. Such a die is more likely to
fall "flat" with a 1, 2, 5 or 6 showing and thus frequencies of 3 and
4 spots would be lower than the frequencies of 1, 2, 5 or 6 spots,

Figure 2. A prolate die with the 3-4 (top - bottom) dimension B
slightly larger than the other two equal dimensions A (1-6 and 2-5).

Suppose that the 3 - 4 dimension were greater than the other two bv an
amount & . This would increase the frequencies g,, u., @q, bv 2

proportional awount: B§ and decrease the frequencies™a, And hv an
amount. 2 88 (this preserves normalization), ’

\2
)
o,
24

Thus we now define a new constraint function:
L =11 -2-211, (26)
awd e tind <tp> = Lgity () = 07 + 95 — 2(03 + 04)
+ 05 + 05 = 0.1393 (27)

from Wolf's data on the white die given in Table T. We will have two
lagrange multipliers and the partition function V. will now be:

LN =rep[= Nt - Nh0] (28)
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where fl(i) = 1 -3.5 from Eq. 19 and f2 (i) is given in FEq. 26.

letting x = exp (*‘Al); y = exp (-A 5)

5/ 3 3 -3 4 5

- 2 —
Then Z(AI,AZ) = X 2 y(l+x+xy +x7y 7+ x +x7)

We now have two constraint equations:

01

- X'—E;];—‘ 0, Z I:Z -y '12—32-‘ =0 (29)

LF,

These yield two coupled equations in x aad y:

(2F +5) + (2F)43) x + (2F +1) x2y 3 4
(2F)-1) Oy 4 (2F|-3) x4 (2F,-5) x> =0 (:3())
and (Fz—l) (1+x+x4+x5) + (F2+2) (X2+X3) _V—3 -0

The IMSL library now comes to our aid with a very nice subroutine
Z5POW, which solves n simultaneous non-lirear equations in n unknowns.
For x and y we get 1.03223 and 1,07442 and the re§91§ing ME
probabilities are given in Table IV, Z = 6.08530 x "7 y.

Table IV Wolf's dice data with two constraints (white die)

t 84 Py A=y G
1 0.16230  0.16433  -0.00203  0.50
2 0.17245  0.16963  0.00282  0.94
3 0.14485  0.14117  0.00368  1.91
4 0.14205  0.14573  -0.00368  1.85
S 0.18175  0.18656 -0.00431  2.48
6 0.19660  0.19253  0.00402  1.68

See the footnote for Table TII, ChizC (0.05) on 3 degrees of freedon
is 7.81.

Table IV agrees with Ed Jaynes' results gxcept that he used 5 degrees
of freedom and the critical value of Chi” at the 5% level is 11.07.

He thus concluded that "there is now no statistically significant
evidence for any further imperfection. ..". In a later paper Jaynes
(1979) discusses the number of degrees of freedom he should have heen
using and concludes unequivocally that the correct formulation is:
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df =n -1 - m

. . .2
where df = number of degrees of freedom in Chi®, n = number of
possibilities ( = 6 for a die) and m = number of constraints. We

subtract one more for normalization. Simply put, the number of
degrees of freedom is the number of independent values of the
probability which can be assigned. In the cise of two constraints
plus normalization (essentially three constraints) we could assign
only three probabilities lying on the range O to 1 and then the other
three would he uniquelv determined.

Thus we see that f{or the white die there is still a statistically
significant (at the 93% level) imperfection not explained by misplaced
center of mass or oblateness., Jaynes 1979 savs now that: "To assume
a further very tiny imperfection [(the 2-3-6) corner chipped off] we
could make even this discrepancy disappear; but in view of the (great)
number of trials one will probably not consider the result as
sufficiently strong evidence for this." The word "great" probablv was
intended to he "small".

Let us disagree midly with Jaynes at this point and actually look for
this tiny third imperfection,

3. Three Constraints. Figure 3 gives a sketch of a die with the
imperfection suggested by Jaynes.

Figure 3. A die with a small chip broken off the 2, 3, 6 corner.
Such an imperfection would tend to increase the probahility of the tie
landing with the 2, 3, or 6 face showing "up".

By shifting its center of gravity, such a die would slightly favar the
2, 3 and b6 faces. Let us express this constraint as:

£, (1) = -1, 1, 1, -1, -1, 1 (31)

Table V summarizes all three constraints we are now considering and
attempts to simplify the algebra.

lLet w = exp (- A3)
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Table V Summary of the three constraints
Factor out

i fl(i) fz(i) f3(i) Contribution te Z x—z'sy w_l

1 -2.5 1 -1 x 25y L 1

2 LS 1 1 1Oy v x W

3 205 =2 1 x 05,72, 2y 2
. os o 4 0.5 -2 -1 3,

5 1.5 1 -1 x>yt &

6 2.5 1 1 2y v x>

Since the algebra gets a little tedious and mistakes are likely, the
use of such a table is recommended in general. As a footnote,
programs capable of simple algebra and differential calculus exist
now. Use of such programs would be really beneficial. The three
non-linear coupled equations for the constraints are now:

SN R 2 2 -32
(2P1+3, + (2k1+3) X W+ (2F1+1) x7y TwT o+

3 2 (32)

+ (2F1-3)xA + (2F1—5)x5 N

7 _ 7
(Fz—l) (1+xw™ + x4+ x5w2) + (F2+2) x2 y 3 (w"+x) = 0.

(F 1) (1ecCy ex®™) 4 (Fum) WP x (g™ + 5 = 0.

(2F -xy”

With values: F, = 0.0983; F, = 0.1393; F, = 0.0278 the three coupled
equations can bé sg%vgd to_glve X = 1.03092; y = 1.,07425; w = 1.02159
and 2 = 6,196106 x “°7 y w . Thus we get Table VI summarizing the
resulting maximum entropy probabilities.

Table VI, Wolf's dice data with three constraints (white die)

t 84 Py Ay =8mpy G
1 .16230 .16139 .00091 0.10
2 17245 .17361  -.00116 0.16
3 14485 14434 .00051 0.04
4 .14205 14256 -.00051 0.04
5 .18175 18215  -.00040 0.02
6 .19660 .19594 .00066 0.04
0.39

See footnote to Table II. Chic2 on 2 degrees of freedom is 5.99.
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The agreement between the observed frequencies g. and the maximum
entropy probabilities p. is now essentially perféct. in fact it is
too good! The agreement is much better than would be expected if
Wolf's experiments had been repeated many times. The observed
frequencies in many sets of experiments, each 20,000 tosses long,
would differ from each other by much more than the g .-p. from Table
VI. Jaynes (1978) calculates that the f}y&tuations 1 i3 the observed
frequencies ought to be of order (g, /N) . Forg. =1/6, Ag.~
0.003. All of the deviations g.—p.lin Table VI are'smaller than'this
and all but g,-p, are about an drdér of magnitude smaller.
Nevertheless,“loGking at Table IV again, with only two constraints,
four of the deviations are larger than 0.003. 1In summary the observed
frequencies for the white die can be completely explained bv three
physical constraints:

The largest is No 2, the oblateness,

The next largest is No 1, the center of gravity shift
by spot removal and:

The smallest is a tiny chip off the 2 - 3 - 6 corner.

The first two are required - the evidence for them is overwhelming.
The evidence for the,third is much weaker. From Table IV again, for
two constraints, Chi® = 9.37 which is just significant at the 95%
level but not significant at tte 97.5% level.

Further thoughts on the white die. The computer program which solves
the three constraint problem has been generalized (quite simply) to
solve all of the imbedded problems:

No constraints

any one of the three acting by itself

any two acting together

all three.

The first case is trivial and reduces to p;= 1/6. The last case has
just been described. We summarize the resilts of all cases in Table

VIL.
Table VII. Chi squared for the white die. 1 = constraint on; 0 =
off.
Constraints
No. 1 No., 2 No. 3 df Chi Square

1 1 1 2 0.39

1 1 0 3 9.37

0 1 1 3 56.28

0 1 0 4 72.01

1 0 1 3 189.77

1 0 0 4 199.42

0 0 1 4 253.85

0 0 0 5 270.96
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In summary the most important single constraint is No. 2 (oblateness)
the next important single is No. 1 center of gravity shift and the
least important single is No. 3, corner chip. The best 2 constraints
are 1 and 2 acting together followed by 2 and 3 and then 1 and 3. As
a final footnote it is not sufficient to set one of the F's and itsA
equal to zero and then solve the three equations. The equation for
the inactive constraint must be dropped altogether and the
corresponding Aset to zero. This has been done in the program.

b. The Red Die
Io the hest of my knowledge no one has ever attempted a
complete ar lysis of the red die but with a simple program in place it
hecomes 4 trivial rask to see if the same kind of thinking works just
as well in this case, [t had better!  But we must be quite careful
hecause although we expect similar kinds of asymmetries thev need not
be identical,

1. One Constraint. The first constraint as in the case of the white
die, simply requires the average spot number. For the red die this
value is: Ji> = 3.49165 which is less than 3.5. Even though this is
less than 3.5 and not greater than 3.5 as expected we run the ME
calculation with the one constraint:

<i=3.5> = -0.01835.

We get x = 0,993728 and Z= 5.86966. The ME probabilities are given in
Table VIIT.

Table VIIL. Wolf's dice data with one constraint {red die)

! 84 Pj A =8Py C3
1 .17035 16930 .00105 13
2 .18155 16824 01331 21.07
3 .15880 .16718  -,00838 8.41
4 . 14580 J16613 -,02033 49,77
5 17240 .16509 00731 6.47
6 17110 . 16406 00704 6.05
91.90

See footnotes to Table [1T.

Looking at A. = g.-p. from Table VIII we see at once that A3 and Ay,
are negative whxlelthe others are all positive. This is precisely the
same situation we found in Table TII for the white die. The red die
is also prolate in exactly the same way as the white die! This
situation is not really as bizarre as might first be thought. Given
that the die maker was prone to err on the prolate side, the only real
coincidence is in the numbering of the faces, T[f he started his
numbering (carving of spots) at the one spot he would be twice as
likely to start with one of the four faces which are a short distance
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apart as on either of the two "long" faces. Having done so, the two
spots would be on short faccs just as often as on a long face. Don't
forget that once a one spot has been carved, the six must be on the
opposite face. Thus the appearance of identical asymmetries on the
two dice is not very surprising at all,

2. Two Constraints. We may now use the same program again to

incorporate the first two constraints with values Fl = <fl> =
-0.01835; F2 32<§2> = 0.0862. We get x = 0.993965; y = 1.04508;
Z = 5,66614%x """y and Table IX gives the resulting probabilities.

Table IX Wolf's die data with two constraints (red die)

' By Py Ap=egpy G
1 .17035 .17649 ~.00614 4.27
2 .18155 17542 .00613 4.28
3 .15880 .1527A 00604 4.77
4 . 14580 15184 -.00604 4.80
5 17240 17227 .00013 0.00
6 17110 17123 ~.00013 0.00
18.13

See footnotes to Table ITT.

3. Three Constraints. We see here a tremendous improvement wirh an
added bonus. Now that we have removed, by ME, the effects of the
first two constraints, a third, smaller, but significant, constraint
is now very obvious. Sides 5 and 6 have been fit very well indeed and
the other four discrepancies are all of the same magnitude but with
two plus signs and two minus signs. A possible physical explanation
will be discussed later but the constraint to use now instead of the
third constraint we used for the white die is:

£, () =-1, 1, 1,-1,0,0 (33)

we now modify the master program slightly to accomodate this new
constraint. Once again we can solve all of the imbedded probleus.
Table X shows the results.
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Table ¥. Chi ~nuared for the red die. 1 = constraint on: O = off,

Constraint Degrees of
1 2 3 freedom Chi Square
| 1 L Z 0.0Ub
0 1 1 3 2,40
1 1 0 3 18,13
0 1 0 4 20,44
1 0 1 3 74 .86
0 0 1 4 77.16
1 0 0 4 91.90
i) 0 0 B 94,19

Summarizing our results for the red die we have seen, that:
lhe red die was no more fair than the white die,

The excavation of spots and the subsequent shift of the center of
ar4vity was not an important constraint for this die as it was for the
white die, Other {unknown) compensatory constraints mist have been at
wOrk,

The red die was oblate in essentially the same way that the white die
wits. Fur hoth dice this was the most important constraint.

There was no evidence of a corner chip here as there was for the white
1ie but a coustraint of the mathematical form -1, 1, 1, -1, O, 0 was
operating. No simple physizal explanation seems in order but perhaps
two simple constraints were acting in concert. A small wear spot on
the 2 - 3 cdge and a small excess of material on the 1 - 4 ~dge would

make 2 and 3 more likely and 1 and 4 less likely.

After removing the gost important constraint (oblateness) the misfi:
as gxpressed by Chi® = 20,44 is quite significant. Critical value
Chi™ on 4 df is 9.5 at 5% level,

When constraints number 2 and 3 are used together Chi2 drops way down
to 2.40 and the agreement between the nhserved frequencies g, and the
ME probabilities p, is too good! Repetitions of the 20,000 toss

experiment would véry likely produce departures larger than the A\
obtained from these two constraints, '

The final conclusion from our exhaustive analysis of the two dice is
that the maximum entropy principle allows us to discover physical
imperfections in a pair of dice from data over 100 years old, At
least as far as real dice are concerned, the principle of ME works and
works brilliantly!




MAXIMUM ENTROPY CALCULATIONS ON A DISCRETE PROBABILITY SIPACE 223

IT[. Published Criticisms
There have been many published papers which criticize the
maximum entropy principle in general and Jayne's treatment of dice
experiments in particular., Most of these attacks have been answered
in the literature, some of rhem many times.

a. Older Criticism
For some of the earlier criticism see for ¢xample ihe
paper by Rowlinson (1970) and Jaynes's (1978) answer. For a
particularly virulent set of attacks see Friedman and Shimony (1971)
and for defenses see Jaynes {1978} p 53, Tribus and Motroni (1972)
Gage and Hestenes (1973) and Hobson (1972). See also Friedman (1973)
and Shimony (1973) for their replies.

b. Frieden's Paper
T-: latest advcnture in "anti-maximum-entropism" comes
from B, Roy Frieden (1985) who professes to be "quite happy with (his)
empirical results" using the maximum entropy formalism., The careful
reader of Frieden's "Dice, Entropy and Likelihood™ hereinafter
referred to as DEL, might take pause at some of the statements to be
quoted now.

Statement 1:

"For example, this author originally believed ME to
provide a maximum probable answer. However, at least for
photon images, this is usually wrong. ...... Or, if it
were required to estimate the most probable roll
occurrences for an unknown die, the die would have to be
known A priori to he fair, a rather restrictive
assumption.”

Wolf's dice were not fair. A priori, there is no requirement for
fairness.

Statement 2:

"Usually an engineer wants to know how probable his answer
is, not how degenerate it is. The two concepts differ in
general, and only coincide when every outcome has the
same probability (i.e. when the die is fair."

The maximum-entropy die is fair only if there are no constraints
acting besides normalization.

Statement 3:

"The aim of this paper is to show that the die experiment
just spoken of has solutions by classical, Bayesian
estimation; that the probability of these solutions may
be computed, as with any Bayesian problem; that
therefore, there is no need to introduce a new
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concept such as maximum entropy in this most basic of
problems; and that maximum entropy is not coincident with
these solutions. TIn fact maximum entropy not only gives
the wrong answer, it gives an answer that is very far
from right."

Note the glee in the last sentence. Note also that the entire purpose
of ME is to determine a prior probability assignment. This prior can
then be used in any subsequent Bayesian analysis.

Statement 4:

“we shall solve this problem in a purely classical way,
without the need for recourse to any exotic estimator,
such as ME."

Note the pejorative word "exotic'.
Statement 5:

"As we shall see, the most valid objection to the use of
[Frieden's Eq.] (7) is that, although it describes
'maximum ignorance,' it does not describe the user's
state for a die in particular. The wrong experiment is
being performed to model maximum ignorance".

Frieden changes Jaynes' die problem brutally and then complains that
his new problem is not the right problem.

Statement 6:

"What this means is that we are not in a state of maximum
ignorance when given an unknown die. We know what to
expect a priori of its biases. For the particular case
of a die, a real one, it would be wrong to assume maximum
ignorance present. Hence, rolling a die is the wrong
experiment to use when attempting to model 'maximum
ignorance' situations. No wonder the result [Frieden's
Eq.] (17) goes against intuition.”

Once again, Frieden, having changed the problem, complains that this
new problem is the wrong problem.

Statement 7:

"We suggest that in the past readers have been seduced
into a belief in ME principally because of this confusion
between what constitutes maximum ignorance on one hand,
and what constitutes the state of ignorance in a real die
experiment on the other. Tf you want maximum ignorance
do not consider a die experiment!"
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Did you catch the truly pejorative word "seduced"?

Note in Statement 3, the use of the word "new" in connection with ME,
aud in Statement 4 the even more revealing word "exotic" which also
appedrs again later. Note also the word "seduced"” in Statement 7. A
psychologist examining this paper might conclude that something other
than pure scientific discourse is going on here. There is a pervasive
feeling here that the author thinks he has found a fundamental flaw in
the use of the ME principle and he is downright gleeful about it!

Just reread Statement 3.

At this point we will examine the substance of the Frieden paper DEL.
Recall that in Jaynes' formulation of the problem, we are given:
An enumeration of the possibilities,

The average value of some linear constraint (e.g. the
average spot values) measured in some previous experiment

Normalization
And nothing more.

In DEL, Frieden now changes the problem from that of a six sided real
die to that of a threce-sided imaginary die formed by combining rolls
of one and six to yield one; two and five to yield two and three and
four to yield three. He then calls the unknowns "biases" and labels
them X . Then the real heart of the paper is introduced with
Statement g

Statement 8:

"By 'nothing' the user usually means that a priori every
possible set of numbers x 17%90X (obeying normalization
equation (1)) may be present w1%h equal probability or
frequency. Such a flat or uniform law is widely used in
estimation problems. for example: when x 1Xq are the
spatial coordinates of a material object w%ose locatlon
in a finite box is completely unknown a priori. Or, when
a uniformly glowing planar image emits photons from
unknown positions (x,y) = x,,x,. Or, when a distant
aircraft of unknown coordinateS (x,y) is being tracked;
etc., This is also MacQueen and Marschak's (1975)
definition of maximum ignorance, and we shall use it as
well,"

Here we go off the deep end! Frieden has changed an essentially
discrete problem into an essentially continuous problem!
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Recall the discussion in section Ia to the effect that Jaynes' die
problem is isomorphic to any number of essentially discrete games, eu
roulette, drawing a ball from a bag, drawing a card from a pack, etr.
The essential features of these games are two in number: they are
discrete and there is a symmetry principle operating. While small
biases may be present in any of these games, large bhiases would be
self defeating; they would be too easily detected. What the "user
usually means'" is, not only mathematically so vague as to he useless
but also is completely irrelevent! Ftrieden can set up and attempt to
solve any problem be choscs. What he must not do is call his problen
"Jaynes' problem™!

This Statement 8 changes .Javnes' problem by adding an enormous amounr
of information nowhere present in Javues' statement of the problem
quoted above. Tet us ask the question "how many hits would be
required to encode the possible answers to Jaynes' problem"? Clearly
for the three sided die, not even two bits would be necessarv Lo
encode the possible outcomes "1", "2" or "3". But if we are to take
Statement 8 seriously we need another layer of information to discover
which one of the infinite number of possible dice we are, in fact,
shooting. Frieden, later in the paper, tries to simulate his
continuous problem on a computer as follows:

Statement 9:

"In other words, the prediction is that only roll outcomes
2 occurred! Actually this result can be explained in
hindsight. Suppose we try to simulate the situation by
repeatedly selecting sets of hiases for a die, rolling
the die, and only counting those biases which give rise
to the required n. 1o this way, p(x,, x,, X,) is built
up as a histogram, event by event. iet éhe iases be
selecred on a fine grid so that "every" triplet x,, o
X, is sampled only once. This accomplishes the f{at
pfior probability law [Frieden's Eq.] (7). Which such
triplet will most often give rise to a value n = 2?7 It
is obvious that the triplet (0,1,0) can onlv give rise to
value n = 2."

Clearly B. Roy Frieden changed the problem - and drastically so.
Frieden's problem now becomes: given an entire urn full of dice, all
different, made very carefully by some imaginary machinist, so that
each one will exhibit a different set of probabilities for the three
faces. For a very crude set, with 11 possible probabilities for each
face our patient die maker would manufacture 66 dice. Sixty-six is
the number of normalizable triplets with a granularity of 0.1.
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tne real die for Jaynes, 66 imaginary dice for tFrieden! And if
Frieden wanted 101 possible probabilities for each face, our die maker
would need to produce 5151 precisely carved dice! No wonder Frieden
further changed the problem so that our old fashioned real six sided
die lost half of its faces! Three - sided die indeed!

Now with our new three - <sided die we are told that the dverage toss
in a previous experiment was 2.0. Frieden now goes through some
calculations to show that out of our urn <ontaining a large number of
Jice, we have indeed selected the rare die with probabilities 0, 1, 1!
Of course this serewball die would give an average toss of 2 -~ it had
no choice. [t had zero entropy - it always showed a 2 because it had
ro. Tossing this die vielded no new information, it couldn't, 1t was
alwavs pointless to toss it at all. What an enormous constraint to
Tower our entropy from a maximum to zero! Where in the original
statement of the problem by Jaynes did it ever say that any face was
impossible?

Frieden insists that his new problem represents a state of true
ignorance and that the one single real Jaynes' die does not. Wwe do
not achieve a state of ignorance by making thousands of unnecessary
assumptions!  What we do is put in an enormous omount of prior
information. 1Is it any wonder at all that Frieden's answer is wildly
different from Jayvnes?

Returning to the question asked about how many bits would he required
for encoding the Frieden die, we see that we would {irst »f all
require log, (5151) or about 7 bits to encode the infarmation "one die
out of 5151 dice has been selected",

Let us examine Frieden's Monte Carlo calcularion in a little more
detail, If we use a granularity of 0.1 we will get 11 puss%hlo
"biases" or probabilities for each face for a total of (11)7 = 1331
dice. Of the 1331 dice only 66 can be normalized and of the 65
permissable dice only 6 will yield an expectation vialue of 2.0. These
six have prohabilities of (0,1,0), (.1,.8,.1) (.2,.6,.2), (.3,.4,.3),
(.4,.2,.4), (.5,0,.5). The middle member of this set (.3,.4,.3) is
the closest we can come to a "fair die” with prohabilities

(1/3,1/3,1/3).

For a granularity of 0,01, there will bhe 101 possib%e hiases for each
face (0., 0.01 ... 1.00). Thus there will be (101)° or 1,070,301
possible triplets, of which only 519t can be nvimaiiced. From this
set, any single choice will occur with probability 1/5151.

Of these 5151 dice only 51 would yield an expectation value of 2.0,
These 51 would be (0.00,1.00,0.00), (0.01, 0.98, 0.01) ....(0.50,
0.00, 0.50)., The closest to "fair" of any of these dice would be
(.33, .34, .33).
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Not only does Frieden change Jaynes' discrete problem into a
continuous one to apply Bayes' Theorem, but he changes back to the
discrete case when he "explains" Jaynes' ME approach. He says:

Statemeant 10:

"Jaynes' ME approach [Frieden's refs] to the die problem is
as follows. Assume that N is large enough [Frieden's
Emphasis] that the law of large numbers [refs] holds, so
that the die biases can be well approximated by values 8
=']/N"

Did Frieden ever read Jaynes' paper? Where does Jaynes ever talk
about N being large enough?

The only effect that N has is to determine the variance of the ME
probabilities, not the probabilities themselves (p, , i = 1,n). 1In
fact in the same paper referenced by Frieden, Jaynés (1982) discusses
an experiment with only N = 50 throws of a die in which we were given
the average number of spots as 4.5 instead of 3.5 as expected from a
fair die. Rowlinson (1970) advocated a binominal distribution instead

of the ME distribution. We now quote Jaynes exactly: "Even if we
come down to N = 50, we {ind the following. The sample numbers which
agree most closely with (10, 16) while summing to N, = 50 are {N } =

{3,4,6,8,12,17) and (N' } = (0,1,7,16,18,8} respectively. With such

k .
small numbers, we no longer need asymptotic formulas. For every way
in which Rowlinson's binominal distribution can be realized, there are
exactly W/W' = (7!16!18!)/(3'4'6'12'17') 38,220 ways in which the
maximum-entropy distribution can be realized". In the above
stdrement, equations (10 and (15) are Jaynes' ME probabilities and
Rowlinson's binominal probabilities respectively.

c. Musicus' Paper
The paper DEL by Frieden elicited a comment by Bruce
Musicus (1986). Musicus accepted the Frieden transmogrification of
Jaynes' discrete problem into the continuous problem we have already
discussed, But Musicus made the excellent point that is nowhere
mentioned in DEL that Frieden is discussing not probabilities but
probability densities. Musicus proceeded to integrate Frieden's

densities to generate marginal densities. With these waiginal
densities Musicus makes the point that no single point estimate would
be at all useful or meaningful without a confidence region. Musicus
then finds several "unreasonable" point estimates which he calls:

Statement 1:

MAP - A: Xy = (0,1,0)

Xy 0%,
(0,0.5,0), for N even

MAP - B: xl,x2,x3= ‘ Y
(0,0,0) (sic) for N odd
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We certainly agree with Musicus that these estimates are unreasonable.
Musicus adds:

Statement 2:

"The fact that these point estimators all give radically
different estimates is hardly surprising, given that the
probability density in Frieden's problem is not unimodal,
and is not strongly clustered around the center.,”

Musicus then proceeds to discuss Maximum Entropy as follows:
Statement 3:

"Note that Maximum Entropy is thus justified for a problem
involving known a priori biases x,,x,,x, and incomplete
observation data (we only know the méan™n of the throws
of the dice, n,,n,,n,) with asymptotically infinite
numbers of throws“N.” Frieden's paper reverses the
problem, asking for estimates of x. ,x,,x, given the
observation mean n; it is not surprising that he gets a
very different answer.”

Fact: Using ME we are not given "a priori biases". Tt is the duty of
the ME caluclation to convert information - the given mean n - into a
probability distributi-n. No asymptotically infinite numbers of
throws are necessary. Frieden's paper doesn't reverse the problem at
all! Frieden changes an essentiallv discrete problem into an
essentially continuous problem., We agree with Musicus' last statement
"it is not surprising that Frieden gets a different answer".

d. Makhoul's Paper.

The Frieden paper we have been discussing was firet
pointed out to me at the Third ASSP Workshop on Spectrum Estimation
and Modelling in a paper entitled "Maximum Confusion Spectral
Analysis™ by John Makhoul (1986). The content of this paper, which is
available in the proceedings, was not quite as whimsical as its title
suggested; at least two scientists in the audience seem to have been
convinced by its attacks on the ME method, one of which was a simply 2
recounting of Frieden's paper. 1t was this preseniaticn that
stimulated m2 to study the subject of Jaynes' die in dapth and
ultimately to write this present paper. 1[I am really indebted to John
Makhoul for the stimulaticn. The Makhoul paper was limited in length
tc four pages of which only the first two are devoted to an
"explanation” of ME and to the dice problem. The concentration of
error per page in this paper is truly astounding!
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Statement 1:

"We assume that a random experiment has r possible events
at each trial and that each event i, 1<1i<r, has an a
priori known probability xi."

Fact: The prior probabilities are not known but unknown, The whole
point of ME is to determine a set of prior probabilities consistent
with all known information and maximally non-committal with respect to
everything else!

Statement 21

"Perhaps the greatest contributing facter to the confusion
surrounding ME is the claim or allusion by some that ML
provides a posterior estimate of the a priori
probabilities x.”

Fact: ME is used to determine the prior probabilities. No competent
ME practitioner, and certainly not ©d Jaynes, ever claims that ME
produces posterior probabilities. As in the die experiment a sequence
of ME calculations can produce sets of probabilities which agree
better and better with observed frequencies, but each set of
probabilities is essentially a prior probability assignment, ([f
another experiment were then performed, Bayes equation would then use
the ME probabilities and the experimental information to produce a set
of posterior proubabilities which might be better than the ME
probabilities if the new information were neither redundant nor
contradictory but cogent.

Statement 3:

"Wurthermore, it is claimed that this estimate is the most
probable or most likely solution, ie, it is a maximum a
posteriori (MAP) estimate. Also, it is claimed to be the
solution that is 'maximally noncommittal' and makes the
fewest assumptions in regard to the unknown data.”

Fact: The first statement is untrue. The second is precisely
correct, and the claim is also precisnly correct.

Statement 4:

"Far from being maximally noncommittal, the MF solution is
based on a very specific and hightly committal assumption
ol an equiprobable prior."

Fact: No equiprohable prior is ever claimed by competent ME
practitioners. We have demonstrated in section Ib that under Lhe
assumption of discreteness (we have an enumeriation of the
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possibilities) and normalization and nothing more, equal probabilities
for all possibilities is a consequence of ME, not an assumption. As
soon as more information, perhaps in the form of expectation values,
is provided, the ME probabilities become unequal in order to fit the
observed constraints.

Statement S:

"The ME principle is then invoked to obtain the most
likely vector of frequencies f that obey the constraint
[Makhoul's Eq.] (10). Using our intepretation of the ME
principle, we in effect assume that the die is a priori
fair (unbiased) and then we compute the most ..:ely
frequencies for which (10) is true. TIf u = 4.5, which is
very different from the expected value of 3.5 for a fair
die, then the ME solution is given by [Makhoul's Eq.]
(1)."

Fact: The primary goal of Mi is to obtain a set of probabilities not
frequencies. Ed Jaynes and other competent ME practitioners are
always careful to distinguish between probabilities which can be
assigned or calculated by ME or other valid procedures, and
frequencies which can be measured in a laboratory. Under certain
conditions which are elaborated in Jaynes (1968, 1978), there is a
very strong correspondence between ME probabilities and measured
frequencies but they are still quite distinct ideas conceptually.
Once again the die is never assumed to be fair! Where does this
gratuitous nonsense come from?

Statement 6:

"While it is true that if N is large, having u = 4.5 is a
good indicator that the die is most likely loaded because
the probability of having u = 4.5 for a fair die is
extremely small, the ME principle cannot be used
productively to estimate the biases of the die. The ME
die is simply not loaded. To name the problem the
'loaded die' problem has been a major source of confusion
because it implies that the die is loaded and that the
estimated frequencies are somehow related to the biases
of the die. TIn ME, the die is known to be fair, but in
an actual experiment the value of u comes out to be 4.5
for example instead of 3.5, which is a unlikely but
possible event. We then use ME to compute the
frequencies that most likely occurred from this most
unlikely event."

Fact: N large (small, medium, known or unknown) is completely
irrelevent for the solution of the ME problem! 1If N trials had been
used to estimate frequencies then N would have a very large effect on
the variance of the ME probabilities but none whatever on the
probabilities themselves.
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Fact: The straight jacket which says that ME die is not loaded is a
complete ficrion! Tt exists only in the mind of the author and has
nothing to do with the theory and practice of ME methods. The reader
is asked to refer again to the exhaustive analysis of the Wolf dice
data. Tf this doesn't convince the reader that ME works beautifully
to discover physical biases which were present in dice thrown
repeatedly over 100 years ago, then nothing will.

The essential difficulty in Makhoul's paper in addition to his
complete and total misunderstanding of ME, is his transformation, in
agreement with Frieden and Musicus of our basically discrete dice
problem into a strange unrecognizable continuous problem with objects
which no one should ever call "dice".
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